Comment on 'New relations between the Clebsch-Gordan coefficients of $\operatorname{SU}(2)$ '

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1980 J. Phys. A: Math. Gen. 133561
(http://iopscience.iop.org/0305-4470/13/11/026)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 04:40

Please note that terms and conditions apply.

COMMENT

Comment on 'New relations between the Clebsch-Gordan coefficients of SU(2),

J J Labarthe
Laboratoire Aimé Cotton \dagger, Centre National de la Recherche Scientifique, Bâtiment 505, 91405 Orsay, France

Received 6 June 1980

Abstract

The relations investigated by Kulesza and Rembieliñski are particular cases of a recoupling equation

Kulesza and Rembielinski (1980) obtained relations between Clebsch-Gordan coefficients of the type (their equation (12))

$$
\sum_{s m} \omega_{[A B],\left[A^{\prime} B^{\prime}\right]}^{s}\langle A B a b \mid s m\rangle\left\langle A^{\prime} B^{\prime} a^{\prime} b^{\prime} \mid s m\right\rangle=0 .
$$

Relations of this kind can be obtained from the recoupling equation (which follows, for example, from equation (2.20) of Rotenberg et al (1959))

$$
\begin{align*}
& \sum_{s m}(-1)^{A+B+s}\left\{\begin{array}{ccc}
s & A & B \\
\lambda & B^{\prime} & A^{\prime}
\end{array}\right\}\langle A B a b \mid s m\rangle\left\langle A^{\prime} B^{\prime} a^{\prime} b^{\prime} \mid s m\right\rangle \\
&=\frac{(-1)^{A-a+B^{\prime}-b^{\prime}}}{2 \lambda+1}\left\langle A A^{\prime} a-a^{\prime} \mid \lambda a-a^{\prime}\right\rangle\left\langle B B^{\prime} b-b^{\prime} \mid \lambda b-b^{\prime}\right\rangle \tag{R}
\end{align*}
$$

by setting $\left|a-a^{\prime}\right|>\lambda$ so that the right-hand side vanishes.
Equation (24) of Kulesza and Rembielinski (1980) is obtained from the recoupling equation (R) when λ takes the smallest meaningful value $n_{0}=\max \left(\left|A-A^{\prime}\right|,\left|B-B^{\prime}\right|\right)$:

$$
\omega_{[A B]\left[\left[A^{\prime} B^{\prime}\right]_{\min }\right.}^{s}=G(-1)^{A+B+s}\left\{\begin{array}{ccc}
s & A & B \\
n_{0} & B^{\prime} & A^{\prime}
\end{array}\right\}
$$

where

$$
G=\left(\frac{(2 A+1)!\left(A+B-A^{\prime}-B^{\prime}\right)!\left(A-B-A^{\prime}+B^{\prime}\right)!\left(A+B-A^{\prime}+B^{\prime}+1\right)!}{\left(2 A-2 A^{\prime}\right)!\left(2 A^{\prime}\right)!\left(-A+B+A^{\prime}+B^{\prime}\right)!}\right)^{1 / 2}
$$

(in the case $n_{0}=A-A^{\prime}$) as results from equation (22.14) of Jucys and Bandzaitis (1965) for the stretched $6 j$ coefficient.

Equations (26) and (27) of Kulesza and Rembielinski (1980) correspond to

$$
\omega_{[A B]\left[A^{\prime} B^{\prime}\right]}^{s}=G[s(s+1)]^{n}(-1)^{A+B+s}\left\{\begin{array}{ccc}
s & A & B \\
n_{0} & B^{\prime} & A^{\prime}
\end{array}\right\},
$$

\dagger Laboratoire associé à l'Université Paris-Sud.
which, using the recurrence relations (23.17) of Jucys and Bandzaitis (1965) is seen to be of the form

$$
\omega_{[A B]\left[A^{\prime} B^{\prime}\right]}^{s}=\sum_{k=0}^{n} C_{k}(-1)^{A+B+s}\left\{\begin{array}{ccc}
s & A & B \\
n_{0}+k & B^{\prime} & A^{\prime}
\end{array}\right\}
$$

where the C_{k} do not depend on s. Equation (26) or (27) is then the linear combination of equations (R) for $\lambda=n_{0}+k$ with coefficients $C_{k}(0 \leqslant k \leqslant n)$.

References

Jucys A and Bandzaitis A 1965 Theory of Angular Momentum in Quantum Mechanics (Vilnius: Mintis) Kulesza J and Rembielinski J 1980 J. Phys. A: Math. Gen. 13 1189-95
Rotenberg M, Bivins R, Metropolis N and Wooten J K Jr 1959 The $3 j$ and $6 j$ Symbols (Cambridge, Mass:
Technology Press, Massachusetts Institute of Technology)

